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What we will cover in Session 6a

• Deepening our understanding of Bayesian hierarchical models

• Applying to different types of uncertainty

• Visualising and specifying our models

• Directed Acyclic Graphs (DAGs)

• Implementing our model using MCMC (JAGS and R – rjags)

• Practical part 2

• We are not aiming for COMPLETE understanding – this is a starting point that 

will give you enough to confidently make sense of other resources

 



Motivation for using hierarchical Bayes…

Why hierarchical models?

- Allow us to decompose complex, high dimensional problems into parts that can be 
thought about and analysed individually

- Broad and flexible approach, allowing us to tackle virtually any ecological problem

• Construct models from simple interactions
• Building a network, focussing on local connections 

amongst elements
• Factor complex relationships into simple pieces
• Models can be constructed and solved in terms of 

stages
• ‘How does this component work, conditioned on those 

elements that directly affect it?’ (Clark 2005)



- We use our knowledge of: 

- ecological systems (the context)

- the ecological process

- how we observe the process

- the assumptions we make to simplify it 
     (represent it as a model) and the parts we 
     have left out

Is my model hierarchical?



Motivation for using hierarchical Bayes…

Clark (2005) Ecol. Letts. Structure in space, 
time, among 
individuals/groups

Measurement 
error; process 
uncertainty
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In Bayesian statistics, we use Bayes law to learn about our process, using the 
model and the data

𝑦 are our observed data, which become fixed after we have observed them

𝜃 are unobserved quantities of interest (e.g., model parameters)

We factor joint conditional probabilities to define and estimate our model…

In other words, we factor y, 𝜃  into ecologically sensible components that can 
be estimated using MCMC as univariate (single-variable) distributions

𝜃|𝑦 =
y|𝜃 [𝜃]

[𝑦]

Bayes law reminder

𝜃|𝑦 ∝ [𝑦|𝜃][𝜃]

Posterior    Likelihood   Prior



𝜃1, 𝜃2|𝑥, 𝑦 ∝ 𝑦 𝜃1, 𝜃2, 𝑥]    [𝜃1] [𝜃2] 

- This model is not hierarchical because there is no conditioning beyond the 
dependence of the data, y, on the unobserved quantities, 𝜃1, 𝜃2

- X is a predictor variable and is assumed to be known, so does not have a 
prior distribution

- The parameters on the right hand side of the conditioning symbol in the 
likelihood are found in a prior – the priors allow for uncertainty

unobserved Likelihood Priors

Observed/’knowns’

Joint distribution
Posterior 

distribution

Writing out a simple Bayesian model
Equivalent to Fig. 1a in 
Clark (2005).



𝜃1, 𝜃2, 𝜃3| 𝑥, 𝑦  ∝  𝑦 𝜃1, 𝜃2, 𝑥] . [𝜃1|𝜃3] [𝜃2] .  [𝜃3] 

- Now 𝜃1 is treated like a random variable or population with its own 
parameters

- No prior on 𝜃1 because it is conditional on 𝜃3 
- A Bayesian model is hierarchical whenever we use probability rules for 

factoring to express the joint distribution as a product of conditional 
distributions

unobserved Prior

observed

Joint distribution

Likelihood

Posterior

Writing out a hierarchical Bayesian model (1)

Hyperprior

Equivalent to Fig. 1b in 
Clark (2005).



𝜃1, 𝜃2, 𝜃3| 𝑥, 𝑦  ∝  𝑦 𝜃1, 𝜃2, 𝑥] . [𝜃1|𝜃3] [𝜃2] . [𝜃3] 

- A Bayesian model is hierarchical whenever we use probability rules for 
factoring to express the joint distribution as a product of conditional 
distributions

unobserved Prior

observed

Joint distribution

Likelihood

Posterior

Writing out a hierarchical Bayesian model (1)

Hyperprior

Tree height

Intercept Slope

Tree diameter Site-level 
effect

Distribution 
of site effects



𝜃1, 𝜃2, 𝑧| 𝑦  ∝  𝑦 𝜃1, 𝑧]   [𝑧 | 𝜃2]    [𝜃1] [𝜃2]

- A Bayesian model is hierarchical whenever we use probability rules for 
factoring to express the joint distribution as a product of conditional 
distributions

- Note there is no prior for 𝑧 because it is conditional upon a quantity, 𝜃2, 
for which there is a prior distribution

- Process; latent states…

unobserved Priors

observed

Joint distribution

Likelihood (product of 
two conditional 

distributions)

Posterior

Writing out a hierarchical Bayesian model (2)
Equivalent to Fig. 1c in 
Clark (2005).Sampled with error; 

latent state; 
unobservable process



Models 𝑧|𝜃  an ecological process of interest

Data  y|𝑧, 𝜃  some observations that help us model and understand the process

Data observations

True State we are trying to model Parameters of interest

𝑧|𝜃 = 𝑧 = 𝑎 + 𝑏(𝑥)

Model

We learn about the process (our 
model) using our data

Defining models



We most often factor the joint distribution in a way that allows us to deal with a 
broad range of ecological questions:

- There is a true ecological state of interest, 𝑧, that is not directly 
observable

- We relate that state to observable data, 𝑦, using a model with a vector of 
parameters, 𝜃𝑜 

- The behaviour of the true state, or the process, is predicted by a model 
with parameters, 𝜃𝑝 

𝜃𝑝, 𝜃𝑜, 𝑧 | 𝑦 ∝  𝑦 𝑧, 𝜃𝑜 
]   [𝑧 | 𝜃𝑝 ]    [𝜃𝑝] [𝜃𝑜]

PriorsProcess 
model

Data modelunobserved

observed

Likelihood

Posterior



© Lindsay Banin



Define question, think about 

ecological process and 

observations

Define the model to represent the 

ecological process and observations

- Diagram it

- Write out posterior and joint 

distributions

- Choose probability distributions

Defining our model and its 

relationship to our data



We most often factor the joint distribution in a way that allows us to deal with a 
broad range of ecological questions:

- There is a true ecological state of interest, 𝑧, that is not directly 
observable

- We relate that state to observable data, 𝑦, using a model with a vector of 
parameters, 𝜃𝑜 

- The behaviour of the true state, or the process, is predicted by a model 
with parameters, 𝜃𝑝 

𝜃𝑝, 𝜃𝑜, 𝑧 | 𝑦 ∝  𝑦 𝑧, 𝜃𝑜 
]   [𝑧 | 𝜃𝑝 ]    [𝜃𝑝] [𝜃𝑜]

PriorsProcess 
model

Data modelunobserved

observed

Likelihood

Posterior

Let’s break this down….



Data model (observation model)

- When we count animals, some are overlooked…the mismatch between what we observe and the true 
state requires a model of the observations 

- z is the quantity we would observe if we could perfectly observe the instance of the true state, without 
any bias injected by our observation process

- The data model includes our knowledge of the relationship between the true state and our observations 
of it and the uncertainty that occurs because that relationship is imperfect

- We estimate 𝜃𝑜 
to represent our observation uncertainty or sampling error

Parameter model (priors)

- what we know about the parameters when we began our investigation, that is, our prior knowledge

Likelihood



Process models are a mathematical statement depicting a process and a way to account for uncertainty about 
the process

- We think about the true state of a system, z (e.g. the size of a population, the number of offspring per 
individual)

- We write an equation, a deterministic model that represents how we think the state of interest behaves, and 
the quantities that influence it

- We recognise there are missing parts to our model that may shape the behaviour of the true state, and we 
estimate these using a parameter, 𝜎𝑝, the process variance

- if we know the functional form of the deterministic model, the values of its parameters, and the process 
variance, we can specify the probability of the true state…in other words, we can make predictions about 
the probability of various values of the true state

- We evaluate the predictions of the process model against data to refine and fit our model

Likelihood



data model + process model + priors = 

full mathematical expression for: 

- our ecological process (process model)

- linked to data (data model)

- in a way that includes all sources of uncertainty (observation uncertainty and process 
uncertainty)

- and allows us to include prior understanding (priors)

Likelihood
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𝑦i

zi

𝜎𝑝𝜎𝑜

Data

Process

Parameters

𝜃𝑝, 𝜃𝑜, 𝑧 | 𝑦 ∝  𝑦 𝑧, 𝜃𝑜 
]   [𝑧 | 𝜃𝑝 ]    [𝜃𝑝] [𝜃𝑜]

PriorsProcessDataunobserved

observed

Likelihood

How can DAGs help us specify our models?



- Nodes (random variables) at the heads of arrows appear on the LHS of the conditioning | 
- Nodes at the tails of arrows appear on the RHS of the conditioning |
- Nodes at the tails of arrows with no arrow leading to it are expressed as priors

- Nodes are random variables
- Solid arrows are stochastic relationships among random variables
- Tails of arrows specify parameters defining the distribution of the random variable at the 

head of the arrow



The relationship between plant growth rate and light tends to be non-linear, approaching an 
asymptote under high light conditions (no matter how much extra light you give it, it can’t 
grow faster!)

Here, we model this simple curve using a Bayesian approach, where our response (y) is 
observed growth rate and our only predictor variable is light (L) = this curve is our process 
model, and it has three parameters to describe it.

Michealis-Menton 
equation

𝛼 = max. growth at infinite light 
𝛾 = rate at which curve tails off
𝑐 = light level at which growth is zero (x intercept)

Process model = 𝑔(𝛼, 𝛾, 𝑐, 𝐿𝑖) =

Example: Modelling light limitation of plant growth



The relationship between plant growth rate and light tends to be non-linear, approaching an 
asymptote under high light conditions (no matter how much extra light you give it, it can’t 
grow faster!)

Here, we model this simple curve using a Bayesian approach, where our response (y) is 
observed growth rate and our only predictor variable is light (L) = this curve is our process 
model, and it has three parameters to describe it.

Michealis-Menton 
equation

𝛼 = max. growth at infinite light 
𝛾 = rate at which curve tails off
𝑐 = light level at which growth is zero (x intercept)

Process model = 𝑔(𝛼, 𝛾, 𝑐, 𝐿𝑖) =

Example: Modelling light limitation of plant growth

The data model includes our 
knowledge of the 
relationship between the 
true state and our 
observations of it and the 
uncertainty that occurs 
because that relationship is 
imperfect



𝑦i

𝜎𝑝𝛼, 𝛾, 𝑐

Data

Process

𝐿i

Dotted line because we are assuming the covariate is 
known and fixed – it does not appear in the joint 
distribution for the posterior…

Process 
uncertainty

Priors

𝜇𝑖

σoObservation 
uncertainty

Unobserved 
true state

Observations 
made with error

Example: Bayesian model



𝑦i

𝜎𝑝𝛼, 𝛾, 𝑐

Data

Process

𝛼, 𝛾, 𝑐, 𝜇𝑖 , σ𝑝, σo| 𝑦𝑖 ∝ ෑ
𝑖=1

𝑛

𝑦𝑖 𝜇𝑖, σo]

                                                       x ς𝑖=1
𝑛 𝜇𝑖 

𝑔(𝛼, 𝛾, 𝑐), σ𝑝] 
                                              x [𝛼] [𝛾] [c] [σ𝑝] [σ𝑜]

Priors

Likelihood

unobserved

observed

𝐿i

Process 
uncertainty

Process model = 𝑔(𝛼, 𝛾, 𝑐, 𝐿𝑖) = 𝜇𝑖 =

Priors

𝜇𝑖

σoObservation 
uncertainty



𝛼, 𝛾, 𝑐, 𝜇𝑖 , σ𝑝, σo| 𝑦𝑖 ∝  𝑦𝑖 𝜇𝑖, σo] 
                                                      x 𝜇𝑖 

𝑔(𝛼, 𝛾, 𝑐), σ𝑝] 
                                                      x [𝛼] [𝛾] [c] [σ𝑝] [σ𝑜]

Priors

Likelihood

unobserved

observed

Process model = 𝑔(𝛼, 𝛾, 𝑐, 𝐿𝑖) = 𝜇𝑖 =

- We choose a normal distribution for y growth rate (can be + or -)

- We choose a normal distribution for 𝜇 because it is a conjugate for the normal, and because it can be + or -

- We use a normal for 𝜎𝑜 
because we have prior knowledge about the mean and variance of our observation 

error

- We use a uniform for 𝜎𝑝 because we know the process variance is positive and bounded within a sensible 
range

- We choose gamma distributions for the 𝛼 asymptote  and 𝛾 (rate) because they are positive random 
variables

- We choose a uniform for c (intercept) because we know it is bounded on the x-axis

- We make them minimally informative priors by centring on zero and assigning a variance that is large 
relative to their values (normal) or placing most of the density mass at zero (gamma)



𝛼, 𝛾, 𝑐, 𝜇𝑖 , σ𝑝, σo| 𝑦𝑖 ∝  𝑦𝑖 𝜇𝑖, σo] 
                                                      x 𝜇𝑖 

𝑔(𝛼, 𝛾, 𝑐), σ𝑝] 
                                                      x [𝛼] [𝛾] [c] [σ𝑝] [σ𝑜]

Priors

Likelihood

unobserved

observed

Process model = 𝑔(𝛼, 𝛾, 𝑐, 𝐿𝑖) = 𝜇𝑖 =



Practical 6a. Fit hierarchical 
Bayesian model in R and JAGS



𝑦𝑖,j

𝜎𝑝𝛼𝑗, 𝛾, 𝑐

Data

Process

𝛼𝑗, μi, j, 𝛾, 𝑐, σ𝑝 
, σo ,

𝜇𝛼, 𝜎𝛼| 𝑦𝑖, 𝑗 ∝  ς𝑖=1
𝑛 ς𝑗=1

3 𝑦𝑖, 𝑗 μi, j, σ𝑜]   

                                         x ς𝑖=1
𝑛 ς𝑗=1

3 μi, j 
𝑔 𝑐, 𝛾, 𝛼𝑗 , 𝜎𝑝]

                                                x     ς𝑗=1
3 [𝛼𝑗| 𝜇𝛼, 𝜎𝛼]

                                                               x     [𝜇𝛼] [𝜎𝛼] [𝛾] [c] [σ𝑝 
] [σ𝑜 

]

𝐿𝑖,j

Hierarchical Bayesian model…now with multiple sites, j

Process model
 = 𝑔(𝛼, 𝛾, 𝑐, 𝐿𝑖

, 𝑗) = 𝜇𝑖, 𝑗 =

Parameters

𝜇𝛼 𝜎𝛼
Hyper-parameters

𝜇𝑖, 𝑗

σo

21

3

α1

α3

α2

Multiple sites, j, and we expect 
there to be differences in the 
maximum growth rate per site, 
αj, for instance due to soil 
water availability
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What we covered in this session

• We have linked Bayesian theory more explicitly to our modelling process

• We have shown how diagramming can help to grapple with model structure, especially 

as they grow in complexity (variables, latent variables, grouping factors….)

• We have demonstrated another flexible tool (AKA JAGS) for explicitly writing, running 

and evaluating our own models





This concludes

Hierarchical modelling
Part 3

 



Directed Acyclic Graphs (DAGs)
(Graphical modelling, Bayesian Networks)



- We use these to draw and then write out factored expressions for joint 
distributions

- The expression for the joint distribution is then implemented within a 
statistical software/package (e.g., BUGS, JAGS, STAN) to fit the model and 
estimate the parameters of interest 

Define question, think about 
ecological process and observations

Define the model to represent the ecological 
process and observations

- Diagram it
- Write out posterior and joint distributions
- Choose probability distributions

Directed acyclic graphs (DAGs)



Directed Acyclic Graphs (DAGs)

• Describe a complex system in a simple way
• Make statements about conditional dependence and 

independence
• Provide a basis for computation
• Nodes are random variables
• Two nodes linked by an arrow are dependent (direction of arrow 

shows direction of dependence) – parent and child nodes
• Nodes not connected, with no common ancestors, are marginally 

independent

A

B

C

Nodes

- Nodes (random variables) at the heads of arrows appear on the LHS of the conditioning | 
- Nodes at the tails of arrows appear on the RHS of the conditioning |
- Nodes at the tails of arrows with no arrow leading to it are expressed as priors
- Solid arrows are stochastic relationships among random variables
- Tails of arrows specify parameters defining the distribution of the random variable at the head of 

the arrow



A

B

Pr(A,B) = Pr(A | B)  Pr(B)

Joint 
probability of 
A and B

Probability of A given B 
multiplied by Probability of 
B



A

B

Pr(A,B) = Pr(A | B)  Pr(B)

Joint 
probability of 
A and B

Probability of A given B 
multiplied by Probability of 
B

• All random variables (letters; joined by solid 
arrows) in the diagram are in the joint 
probability distribution

• If it is at the head of the arrow, there is 
dependency – conditional on the quantity 
at the end of the arrow

• Anything on the end of an arrow with 
nothing else feeding in and therefore 
expressed unconditionally - prior



Pr(A,B,C) = Pr(A | B, C)  x
   Pr(B | C) x
   Pr(C)

A

B

C

Here, A is conditional on B 
and C; B is conditional on C



A B

Pr(A,B,C,D) = Pr(A | C)  x
       Pr(B | C) x
       Pr(C | D) x
       Pr(D)

C

D



A

B
Pr(A,B,C,D) = Pr(A | B, C, D)  x
       Pr(B | C, D) x
       Pr(C | D) x
       Pr(D)

C

D



A

B Pr(A,B,C,D) = Pr(A | B, C, D)  x
       Pr(C | D) x
       Pr(B) Pr(D)

C

D



Linking DAGs to our modelling 

process
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