cyto_ml.visualisation package¶
Submodules¶
cyto_ml.visualisation.app module¶
Streamlit application to visualise how plankton cluster based on their embeddings from a deep learning model
Metadata in intake catalogue (basically a dataframe of filenames - later this could have lon/lat, date, depth read from Exif headers
Embeddings in chromadb, linked by filename
- cyto_ml.visualisation.app.cached_image(url: str) <module 'PIL.Image' from '/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/PIL/Image.py'> [source]¶
Read an image URL from s3 and return a PIL Image Hopefully caches this per-image, so it’ll speed up We tried streamlit_clickable_images but no tiff support
- cyto_ml.visualisation.app.closest_grid(size: int | None = 65) None [source]¶
Given an image URL, render a grid of the N nearest images by cosine distance between embeddings N defaults to 26
- cyto_ml.visualisation.app.closest_n(url: str, n: int | None = 26) list [source]¶
Given an image URL return the N closest ones by cosine distance
- cyto_ml.visualisation.app.create_figure(df: DataFrame) Figure [source]¶
Creates scatter plot based on handed data frame TODO replace this layout with a) most basic image grid, switch between clusters b) …
- cyto_ml.visualisation.app.image_ids(coll: str) list [source]¶
Retrieve image embeddings from chroma database. TODO Revisit our available metadata