
Version Control



What you will learn today
● What version control is
● Why you need it (or maybe you don’t?)
● Session 1: basic concepts
● Session 2: remote hosting
● Session 3: team working
● Up and running with tools and account



What is version control?
• ‘Version control is a system that records changes to a file or set of files over time so that you can recall specific versions later’
• Great free book: https://git-scm.com/book/en/v2
• Excellent Atlassian tutorial: https://www.atlassian.com/git/tutorials/what-is-version-control



Typical scenario in our group



Typical scenario with a model run?



What do you want from version control?
Recovery

Reproducibility
Track changes

Audit and Traceability
Funding requirement
Safety and resilience

Collaboration
Experiments on code





Three learning goals in three sessions
Basic principles Remote hosting Team working

Session 1 Session 2 Session 3



Session 1: Principles
• Version control a set of files on my local drive



Session 1: Principles

Your project GitrepositoryaddedEnable Git

Add Git to your project



Session 1: Principles
• After editing project files, save your changes to Git
• This is called Committing
• Git does not automatically save your changes
• Committing records who did what when

Edits



Session 1: Principles
Committing is a two step process:

1. Choose the changes you want in the commit – called Staging
2. Do the Commit

Edits

AppView.jsMapView.js



App.js

Session 1: Principles

Edits



App.js

Session 1: Principles

Edits

Staged file



App.jsMap.js

Session 1: Principles

Edits



App.jsMap.js

Session 1: Principles

Edits

Staged files



Session 1: Principles

Edits

App.jsMap.js
1 Added title Jon 01-04-2017 13:42

Commit log



AppView.jsMapView.js

Session 1: Principles

Edits

1 Added title Jon 01-04-2017 13:42

Commit log



App.jsMap.js

Session 1: Principles

Edits

AppView.jsMapView.js
1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:47

Commit log



Session 1: Principles

1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:473 Changed style Jon 01-04-2017 15:23

EditEditEditEdit

AppView.jsMapView.jsCommit log



Session 1: Principles

1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:47
4 Added slider Jon 03-04-2017 08:32

EditEditEditEdit

AppView.jsMapView.js

3 Changed style Jon 01-04-2017 15:23

Commit log



Session 1: Principles

1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:47
4 Added slider Jon 03-04-2017 08:32

EditEditEditEdit

AppView.jsMapView.js

3 Changed style Jon 01-04-2017 15:23
5 Fixed data Jon 03-04-2017 10:15

Commit log



Session 1: Principles

1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:47
4 Added slider Jon 03-04-2017 08:32

EditEditEditEdit

AppView.jsMapView.js

3 Changed style Jon 01-04-2017 15:23
5 Fixed data Jon 03-04-2017 10:156 Downloads Jon 03-04-2017 10:15

Commit log



Session 1: Principles

1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:47
4 Added slider Jon 03-04-2017 08:32

EditEditEditEdit

AppView.jsMapView.js

3 Changed style Jon 01-04-2017 15:23
5 Fixed data Jon 03-04-2017 10:156 Downloads Jon 03-04-2017 10:157 Help panel Jon 03-04-2017 13:27

Commit log



Session 1: Principles

1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:47
4 Added slider Jon 03-04-2017 08:32
3 Changed style Jon 01-04-2017 15:23
5 Fixed data Jon 03-04-2017 10:156 Downloads Jon 03-04-2017 10:157 Help panel Jon 03-04-2017 13:27

Commit log
• Snapshot of files at each commit
• Who did what when
• Checkout previous version



Session 1: Principles

1 Added title Jon 01-04-2017 13:422 Added button Jon 01-04-2017 14:47
4 Added slider Jon 03-04-2017 08:32
3 Changed style Jon 01-04-2017 15:23
5 Fixed data Jon 03-04-2017 10:156 Downloads Jon 03-04-2017 10:157 Help panel Jon 03-04-2017 13:27

Commit log
Checkout

All files as they were at commit 3

Working copy



Session 1: Principles

1 Working copy
2 Git repository
3 Stage files
4 Commit files
5 Commit log
6 Checkout 1

2 34
5

6



Session 1: Principles
All exercises use SourceTree

https://nerc-ceh.github.io/version_control/install_sourcetree_windows



Session 1: Principles
Example of selecting files to stage in SourceTree



Session 1: Principles
Example of committing staged files



Example of viewing the commit log
Session 1: Principles



Session 1: Principles
Exercise 1
https://nerc-ceh.github.io/version_control/exercise1
• Enable Git on a folder
• Review the status of files in the folder
• Repeatedly edit files and add your changes to Git
• Review changes
• Checkout a previous version of your changes
• Apply a tag to a specific version for future reference
• Exclude files from version control



Session 2: Remote repository
Others are available
• Gitlab
• Stash
• Bitbucket
• etc…

Github.com



• Register with Github.com
• Free for public and open source projects
• Join the NERC-CEH organisation on Github for free CEH private projects

Session 2: Remote repository

https://github.com/NERC-CEH



• Create empty repository on Github
• Download a local copy – called Cloning
• Work locally just as you did in session 1, committing your changes
• Periodically synchronise with Github using Push and Pull

Session 2: Remote repository



Session 2: Remote repository
Create repository on Github

Clone to your computer

Commit locally

Pushcommits to Github
Pull down commits from others



Session 2: Remote repository
Exercise 2
https://nerc-ceh.github.io/version_control/exercise2
• Register with Github
• Join the NERC-CEH organisation
• Create a repository in the NERC-CEH organisation
• Clone it on local machine and commit changes
• Push repository state to Github



Session 3: Team working



Session 3: Team working
• Collaborating in Github
• Branching and merging
• Sharing changes
• Conflict resolution
• Pull requests and quality control



Session 3: Team working

• Send invitation to collaborators via Github
• Collaborators have Push (write) access to repository
• More details here:
https://help.github.com/articles/inviting-collaborators-to-a-personal-repository

Add collaborators to your private Github repository



Session 3: Team working

• A Branch is a parallel line of development in repository
• Keeps work off main branch until it is ready
• Merging is the process of putting the changes on that branch back into the main branch

Branching and merging



Session 3: Team working
Branching and merging

Main branch

New branch Merge branch

New branch

Single commit



Session 3: Team working

Repository on Github

Checkout branchStage, Commit

Multiple people accessing one Github repository

Person 1
Checkout branch, Stage, Commit

Person 2



Session 3: Team working
• Two collaborators edit the same text in the same file
• Person 1 Pushes their change to Github
• Person 2 Pulls down changes and gets a Conflict
• Person 2 cannot Push to Github until it is resolved
• Conflict must be edited and marked as Resolved
• Demonstrated in exercise
• Merge tools available to help

Conflict resolution



Session 3: Team working

• Pull Request is a Quality Assurance step around a Merge
• Lets collaborators know a branch is ready to be merged into the main branch
• Changes can be reviewed, discussed, altered, etc
• Branch merged only when Pull Request is accepted

Pull Request



Session 3: Team working
Pull Request

Main branch

New branch Merge branch

New branch

Single commit

Merge prevented until Pull Request accepted



Session 2: Team working
Exercise 3
https://nerc-ceh.github.io/version_control/exercise3
• Invite collaborators to your repository
• Work as a team on a new branch
• Create and resolve conflicts
• Issue and accept a pull request



Workflows
• Gitflow

• Available in SourceTree:



More than just version control
• Integrates with issue management

• Branches matched to issues
• Workflows triggered by commits, pull requests, etc

• Automates unit and integration tests
• Automates deployment to servers

• Open sourcing 
• Promotes collaboration and quality
• Increases reputation



SVN to GIT
To move from SVN to GIT without keeping history
1. Create new repository in github.com/NERC-CEH (exercise 2 step 2)
2. Clone it to your local drive (exercise 2 step 3)
3. Use SVN Export to get clean copy of your code from SVN into your new local git repository
4. Use git add, git commit and git push to get all those files into your github.com repository
5. Give your team members access to your new github repository (exercise 3 step 2)
6. Team members can now clone your repository and they are up and running in git



Cheat sheet
git clone
git checkout
git add
git commit
git pull
git push
git branch
git merge

Git repository in a mess?
1. Rename the root folder
2. Clone a new copy from github.com
3. With original files to help, make edits to files in new repo
4. Delete original when happy


